[PDF][PDF] Mutations in the gene encoding the RER protein FKBP65 cause autosomal-recessive osteogenesis imperfecta

Y Alanay, H Avaygan, N Camacho, GE Utine… - The American Journal of …, 2010 - cell.com
Y Alanay, H Avaygan, N Camacho, GE Utine, K Boduroglu, D Aktas, M Alikasifoglu
The American Journal of Human Genetics, 2010cell.com
Osteogenesis imperfecta is a clinically and genetically heterogeneous brittle bone disorder
that results from defects in the synthesis, structure, or posttranslational modification of type I
procollagen. Dominant forms of OI result from mutations in COL1A1 or COL1A2, which
encode the chains of the type I procollagen heterotrimer. The mildest form of OI typically
results from diminished synthesis of structurally normal type I procollagen, whereas
moderately severe to lethal forms of OI usually result from structural defects in one of the …
Osteogenesis imperfecta is a clinically and genetically heterogeneous brittle bone disorder that results from defects in the synthesis, structure, or posttranslational modification of type I procollagen. Dominant forms of OI result from mutations in COL1A1 or COL1A2, which encode the chains of the type I procollagen heterotrimer. The mildest form of OI typically results from diminished synthesis of structurally normal type I procollagen, whereas moderately severe to lethal forms of OI usually result from structural defects in one of the type I procollagen chains. Recessively inherited OI, usually phenotypically severe, has recently been shown to result from defects in the prolyl-3-hydroxylase complex that lead to the absence of a single 3-hydroxyproline at residue 986 of the α1(I) triple helical domain. We studied a cohort of five consanguineous Turkish families, originating from the Black Sea region of Turkey, with moderately severe recessively inherited OI and identified a novel locus for OI on chromosome 17. In these families, and in a Mexican-American family, homozygosity for mutations in FKBP10, which encodes FKBP65, a chaperone that participates in type I procollagen folding, was identified. Further, we determined that FKBP10 mutations affect type I procollagen secretion. These findings identify a previously unrecognized mechanism in the pathogenesis of OI.
cell.com